Jirgen Schmidhuber - PowerPlay: training an
increasingly general problem solver by continually
searching for the simplest still unsolvable problem

0.1
0.2
0.3

2.1

(2013)

Tom Rochette <tom.rochette@Qcoreteks.org>

November 2, 2024 — 36¢8eb68

Context
Learned in this study
Things to explore

Given a single task and an agent which is internally composed of millions (or more) of small solver
modules, with some modules producing the right solution while others producing invalid solutions, how
should the agent pick the solution to use (or indirectly, the appropriate module to use)?

Given an unconstrained task invention space, how can the PowerPlay agent deal with contradicting
(task, solution) combination?

— Basically, can an agent learn “non-functions?”

Given that the brain has limited capacity/resources, should we expect it to be unable to learn how to
solve new tasks without forgetting?

It seems that a problem solver that can grow, unlike a pre-wired, unmodifiable topology feedforward
NN, is going to be more flexible after the FNN has been saturated (can solve its maximum amount of
tasks)

— If we allow the FNN to “call” other subnetwork FFNs with similar topology, can we conjecture that
this makes it as powerful as a program that can have infinite length, or will there be limitations in
what it is capable of solving?

How can a system generate meaningful tasks? It seems to me that the biggest issue is that the system
will generate “random” tasks that are of no benefit and that only add a burden to the construction of a
more complex agent

Overview

The agent receives as part of its input a task identifier or query that lets it decide what it is trying to
solve

Notes

1. Introduction

Given a realistic piece of computational hardware with specific resource limitations, how can one devise
software for it that will solve all, or at least many, of the a priori unknown tasks that are in principle
easily solvable on this architecture?


https://github.com/tomzx/blog.tomrochette.com-content/blob/36c8eb68/agi/papers/jurgen-schmidhuber-powerplay-training-an-increasingly-general-problem-solver-by-continually-searching-for-the-simplest-still-unsolvable-problem/article.md

— How to build a practical general problem solver, given the computational restrictions?

e How do initially helpless human babies become rather general problem solvers over time? Apparently

2.1.1

by playing
— Infants continually seem to invent new tasks that become boring as soon as their solutions become
known
— Easy-to-learn new tasks are preferred over unsolvable or hard-to-learn tasks

1.1. Basic Ideas

e In traditional computer science, given some formally defined task, a search algorithm is used to search

2.2

2.3

2.4

a space of solution candidates until a solution to the task is found and verified
To automatically construct an increasingly general problem solver, let us expand the traditional search
space in an unsual way, such that it includes all possible pairs of computable tasks with possibly
computable solutions, and problem solvers
— Given an old problem solver that can already solve a finite known set of previously learned tasks,
a search algorithm is used to find a new pair that provably has the following properties:

* the new task cannot be solved by the old problem solver

* The new task can be solved by the new problem solver (some modification of the old one)

x The new solver can still solve the known set of previously learned tasks
Smart search orders candidate pairs of the type (task, solver) by computational complexity, using
concepts of optimal universal search, with a bias toward pairs that can be described by few additional
bits of information and that can be validated quickly

2. Notation and Algorithmic Framework PowerPlay (Variant I)

The computational architecture of the problem solver may be a deterministic universal computer, or a
more limited device such as a finite state automaton or a feedforward neural network
— All such problem solvers can be uniquely encoded or implemented on universal computers, such as
universal Turing Machines
The problem solver’s initial program is called sg
There is a set of possible task descriptions 7 C B* (B* is the set of finite sequences or bitstrings over
the binary alphabet)

3. Task Invention, Solver Modification, Correctness Demo

Three main jobs
— Task invention
— Solver modification
— Correctness demonstration

4. Implementations of PowerPlay

2.4.1 4.1. Implementation Based on Optimal Ordered Problem Solver OOPS

e The big difference to previous implementations of OOPS is that PowerPlay has the additional freedom

2.5

2.5.1

to define its own tasks

7. Discussion

7.6 Opposing Forces: Improving Generalization Through Compression, Breaking Gen-
eralization Through Novelty

e Two opposing forces are at work in PowerPlay. On the one hand, the system continually tries to improve

previously learned skills, by speeding them up, and by compressing the used parameters of the problem
solver, reducing its effective size.



2.6

— The compression tends to improve generalization performance, according to the principles of
Occam’s Razor and Minimum Description Length and Minimum Message Length
On the other hand, the system also continually tries to invent new tasks that break the generalization
capabilities of the present solver

8. Words of Caution

Unlike, say, traditional virus programs, PowerPlay-based systems will continually change in a way hard
to predict, incessantly inventing and solving novel, self-generated tasks, only driven by a desire to
increase their general problem-solving capacity, perhaps a bit like many humans seek to increase their
power once their basic needs are satisfied

See also

References

Schmidhuber, Jiirgen. “Powerplay: Training an increasingly general problem solver by continually
searching for the simplest still unsolvable problem.” Frontiers in psychology 4 (2013): 313.



	Context
	Learned in this study
	Things to explore
	Overview
	Notes
	1. Introduction
	1.1. Basic Ideas

	2. Notation and Algorithmic Framework PowerPlay (Variant I)
	3. Task Invention, Solver Modification, Correctness Demo
	4. Implementations of PowerPlay
	4.1. Implementation Based on Optimal Ordered Problem Solver OOPS

	7. Discussion
	7.6 Opposing Forces: Improving Generalization Through Compression, Breaking Generalization Through Novelty

	8. Words of Caution

	See also
	References

