J. Roland Olsson - How to Invent Functions (1999)

0.1
0.2
0.3

Tom Rochette <tom.rochette@Qcoreteks.org>

November 2, 2024 — 36¢8eb68

Context
Learned in this study
Things to explore

Using EP theory, how does one program “mutate” into another?

Overview

Adenine, cytosine, guanine and thymine are the four basic building blocks of programs (binary blocks)
Short interspersed nuclear elements (SINEs) = small helper functions

Abstraction: encapsulating a small program within a function, provided the function accepts an
argument

During large scale program evolution, abstraction is essential for at least the following two reasons:

1. The user of an automatic programming system should not be required to define all needed help
functions. Instead, the user should define a small number of primitives whereas the system
automatically constructs a possibly large number of help functions.

2. The system can construct a help function exactly where it is needed and avoid having a too large
scope for the function.

A form of scope restriction actually seems to exist in DNA since repeats often occur in localized regions

— For example, the clustering of multiple copies of genes encoding ribosomal RNA in humans

ADATE uses a so-called cost limit [ that says how many children programs are to be produced from a
given parent program. An abstraction is assigned a cost ¢ which indicates that {/c programs are to be
based on the abstraction

Discriminate against bodies containing if-tests that do not depend on any parameter

See also

References

Olsson, J. Roland. “How to invent functions.” European Conference on Genetic Programming. Springer
Berlin Heidelberg, 1999.


https://github.com/tomzx/blog.tomrochette.com-content/blob/36c8eb68/agi/papers/j-roland-olsson-how-to-invent-functions/article.md

	Context
	Learned in this study
	Things to explore
	Overview
	See also
	References

