
Automatic template extraction

Tom Rochette <tom.rochette@coreteks.org>

November 2, 2024 — 36c8eb68

0.1 Context
0.2 Learned in this study
0.3 Things to explore

• To extract patterns, group them by starting character, then test how many have the same following
character

• Grammar induction
• Compression

– Compression can be a tool for automatic template extraction, however we would most likely want
to priority semantics of the extracted template over better compression

• Diff/match/patch
• Fragment extraction, then wildcard pattern generation
• Lexer-like that will replace a whole sequence if it is already in the grammar instead of doing character

by character replacement like sequitur

1 Overview
• Extract textual templates from any language (basically tries to find repetitions/patterns)
• Min/max length (characters)
• Discovery of syntax
• Hierarchical/meta extraction

2 Example
<. . .> is a placeholder (can be replaced/is variable)

2.1 If extraction

3 Prototype ideas/pseudo-code
• Create a dictionary of all seen characters
• Create a dictionary of characters -> index
• Define some sort of relative threshold for which to ignore patterns
• You have a single string, you want to extract patterns out of it
• You have two strings, you want to extract patterns out of them

4 Questions
• How to extract simple constructs such as if/elseif/else/while/do/for/foreach?

1

https://github.com/tomzx/blog.tomrochette.com-content/blob/36c8eb68/agi/automatic-template-extraction/article.md


• How to compress aaaabbbb into an expanding aCb -> aaCbb -> aaaCbbb -> aaaabbbb vs AB ->
aaaaB -> aaaabbbb

– aaaabbbb -> aaaCbbb -> aaDbb -> aEb -> F
∗ C := ab
∗ D := aCb
∗ E := aDb
∗ F := aEb
∗ C := aCb
-> This is a context-free grammar

• Do we want to prioritize short rules such as S -> Sa such that they can be repeated many times, or
rules that contains a lot of symbols such as S -> aSa

– Probably want to minimize the number of rules/productions
– Probably want to minimize the rule length

• From [ˆ1]
– p1: no pair of adjacent symbols appears more than once in the grammar;
– p2: every rule is used more than once.

• How can we prefer public function <>(<>) {<>} over } public function <>(<>) {?
– If we refer to an explicit grammar, we can give more weight to the first one because it is likely a

construct/production in the grammar, while the second one is the concatenation of two productions

5 See also

6 References
• http://www.sequitur.info/
• Identifying Hierarchical Structure in Sequences: A linear-time algorithm
• https://en.wikipedia.org/wiki/Three-address_code
• https://en.wikipedia.org/wiki/Optimizing_compiler
• https://en.wikipedia.org/wiki/Intermediate_representation
• https://en.wikipedia.org/wiki/Abstract_syntax_tree

2

http://www.jair.org/media/374/live-374-1630-jair.pdf

	Context
	Learned in this study
	Things to explore
	Overview
	Example
	If extraction

	Prototype ideas/pseudo-code
	Questions
	See also
	References

